Arc Lengths- Step by Step

To find the Circumference (length of the line creating the circle) we use the formula $C=p i \times d$. Where d is the diameter.

To find the Arc Length, we use the formula Arc Length $=\frac{\text { angle }}{360^{\circ}} \times p i \times d$ Where angle is the angle given inside the circle sector.

1) Find the circumference of the circle by:
a) Stating the diameter
b) Using $\mathrm{C}=\mathrm{pi} \times$ diameter

2) Find the circumference of the circle by:
a) Stating the radius
b) Stating the diameter
c) Using $\mathrm{C}=\mathrm{pi} \times$ diameter

3) Find the Arc Length of the sector by:
a) Stating the Diameter
b) Finding Fraction: $\frac{\text { angle }}{360}$
c) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

4) Find the Arc Length of the sector by:
a) Stating the radius
b) Stating the diameter
c) Finding Fraction: $\frac{\text { angle }}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

5) Find the Arc Length of the sector by:
a) Stating the radius
b) Stating the diameter
c) Finding Fraction: $\frac{\text { angle }}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

6) Find the Arc Length of the sector by:
a) Stating the radius.
b) Stating the diameter.
c) Finding Fraction: $\frac{\text { angle }}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter
7) Find the Arc Length of the sector by:
a) Stating the radius.
b) Stating the diameter.
c) Finding Fraction: $\frac{a n g l e}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

8) Find the Arc Length of the sector by:
a) Stating the radius.
b) Stating the diameter.
c) Finding Fraction: $\frac{\text { angle }}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

9) Find the Arc Length of the sector by:
a) Stating the radius.
b) Stating the diameter.
c) Finding Fraction: $\frac{\text { angle }}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

10) Find the Arc Length of the sector by:
a) Stating the radius.
b) Stating the diameter.
c) Finding Fraction: $\frac{\text { angle }}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter
11) Find the Arc Length of the sector by:
a) Stating the radius.
b) Stating the diameter.
c) Finding Fraction: $\frac{a n g l e}{360}$
d) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

12) Find the Arc Length of the sector by:
a) Finding the diameter.
b) Finding Fraction: $\frac{\text { angle }}{360}$
c) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter
13) Find the Arc Length of the sector by:
a) Finding the diameter.
b) Finding Fraction: $\frac{\text { angle }}{360}$
c) Use the formula Arc Length $=\frac{\text { angle }}{360} \times p i \times$ diameter

14) Find the Arc Length of the sector
15) Find the Arc Length of the sector

