Lesmahagow High School Mathematics Department

BGE

Blank Number lines

Greater Decimals

Write the Correct Comparison
Symbol (> , < or =) in each box

2. $5.89 \square 5.9$
3. $0.38 \square 0.4$
4. $4.67 \square 0.467$
5. $1.39 \square 0.139$
6. $0.93 \square 0.91$
7. $0.34 \square 0.034$
8. $3.23 \square 3.18$
9. $0.48 \square 0.048$
10. 2.38

2.41
11.

3.1
12. $4 \square$
13. 8.34 \square 0.834
14. $8.75 \square 0.875$
15. 0.31 \square 0.031
16. 7.23 \square 7.25
17. 6.48 \square 6.51
18. 1.43 \square1.45
19. $2.37 \square 0.237$
$20.3 .57 \square$
3.55

Column Addition with Decimals

Worked Example 1:

Add together $3.25+1.54$

Worked Example 2:

Add 1. 0935 + 23.49

You must line up the columns vertically, so the decimal points are in a vertical line. The numbers either side of the decimal point will fall into place around the decimal point. Then add as for whole numbers, placing the decimal point in the answer in the same column.
3.25
1.0935
1.54
23.4900
4.79
$\underline{24.5835}$

Now try these examples:
a.
1.34
b.
23.402
+2.65
+5.29
\qquad
e.
5.27
$+0.985$

f.
2.035
+68.29
2.49
$+10.582$
c.
205.3
$+0.39$

Now use column addition to add these numbers:
g. $\quad 28.35+1.21=$
h. $34.69+9.42=$
i. $0.35+2.075=$
j. $\quad 375.4+2.375+42=$
k. $\quad 496.25+5.69+0.03=$
I. $30.03+109.205+2.0032=$
m. $2.35+0.09+42.005+1.302=$

Column Subtraction with Decimals

Worked Example:

Calculate 439.05-569.375
First write down the numbers with the larger number on top and keep the decimal points in a vertical column.

3	13	8	13		9	14	10
$\not 4$	$\not 2$	$\not 0$	$\not 4$.	\varnothing	$\not 0$	$\varnothing 0$
	5	6	9	.	3	7	5
3	8	2	4	.	6	7	5

Its helpful to add a zero to make the top number 4394.050

The top number is rearranged (decomposed) before subtracting digits, starting from the right hand column.

4.
$\begin{array}{lllllll}7 & 3 & 2 & 5 & . & 4 & 3 \\ & 6 & 2 & 7 & . & 3 & 5\end{array}$ \qquad
2.

3	9	5	2	.	7	5

3	4	1	5

5.

9	2	5	.	4	3	1
	3	0	.	5	9	

3.

5	9	3	.	4	6	9
	2	2	.	3	4	

6.

4	3	5	.	2	5	
1	4	9	.	3	7	5

Now use column subtraction to subtract these numbers:
7. 2957.30-936.5
8. $4235.25-2349.501$
9. 243.6-82.675
10. 1140-929.125

Decimals Places \& Significant figures

Decimal Places

Complete the table by rounding the original number to:
a) 2 decimal places
b) 1 decimal place c) a whole number
(Remember to start from the original number each time.)

Original number	2 decimal places	1 decimal place	whole number
12.947			
84.3524			
0.765			
104.997			
8.442			

Significant Figures

Complete the table by rounding the original number to:
a) 3 significant figures b) 2 significant figures c) 1 significant figure
(Remember to start from the original number each time.)

Original number	3 significant figures	2 significant figures	1 significant figure
2.856			
44.53			
18.29			
532.41			
99.98			

Multiplying Decimals (1 of 2)

Look at this decimal

U t h
0 . 07

The value of the 7 is $\frac{7}{100}$
$\frac{7}{100}$ is a hundred times smaller than 7

Complete the following:

1. $\frac{5}{100}$ is \qquad times smaller than 5
2. $\frac{2}{100}$ is a hundred times smaller than \qquad
3. $\frac{1 . .}{100}$ is a hundred times smaller than 8

When you multiply a number by a one-digit number with two decimal places you are multiplying by the digit in the decimal and making the number a hundred times smaller.

Look at these examples:

- $6 \times 4=24$
- $6 \times 0.04=6 \times 4 \div 100=0.24$

OK, turn over and try the calculations.
4. $5 \times 9=$ \qquad , so $5 \times 0.09=$ \qquad
5. $7 \times 3=$ \qquad , so $7 \times 0.03=$ \qquad
6. $8 \times 4=$ \qquad , so $8 \times 0.04=$ \qquad
7. $7 \times 6=$ \qquad , so $7 \times 0.06=$ \qquad
8. $6 \times 8=$ \qquad , so $0.06 \times 8=$ \qquad
9. $9 \times 7=$ \qquad , so $0.09 \times 7=$ \qquad
10. $5 \times 6=$ \qquad , so $0.05 \times 0.6=$ \qquad

Now, try these:

11. $9 \times 0.03=$ \qquad
12. $8 \times 0.02=$ \qquad
13. $0.09 \times 5=$ \qquad
14. $0.04 \times 9=$ \qquad
15. $7 \times 0.07=$ \qquad

Complete these:

16. $0.07=$ \qquad $\div 100$
17. $0.02 \times 9=2 \div$ \qquad $\times 9=$ \qquad
$18.4 \times 0.05=20 \div$ \qquad $=$ \qquad
18. $8 \times 0.07=8 \times$ \qquad $\div 100=$ \qquad
19. $0.07 \times 5=7 \times 5 \div$ \qquad = \qquad

Look at this multiplication:
326×4
We can partition 326 into:

$$
300+20+6
$$

Multiplying each number by $\mathbf{4}$ will give us:

$$
\begin{aligned}
& 300 \times 4=1200 \\
& 20 \times 4=80 \\
& 6 \times 4=24
\end{aligned}
$$

Adding the two answers will give the answer to 326×4 :

$$
1200+80+24=1304
$$

We can use the same idea to multiply:

$$
326 \times 0.04
$$

Setting this out in a column multiplication will look like this:

	3	2	6	It might be best to treat this		
\times	0	0	4		\quad	multiplication in two parts:
:---						

1. The multiplication of the digits.
2. Where to put the decimal point.

So, We know that multiplying by 0.04 is the same as multiplying by 4 and dividing by 100

Now, try these:
1.

$3 \quad 42$
$\times \quad 0.02$

2.

$\times 0.03$
3.

4.
402
$\times 0.0 \quad 2$

With these calculations, think about using the carrying figure.
5. $63 \times 0.04=$
7. $241 \times 0.09=$
9. $856 \times 0.06=$
6. $82 \times 0.07=$
10. $4274 \times 0.05=$
11. $8206 \times 0.07=$

Complete the missing numbers:
12. $289 \times 0.06=$ \qquad $\times 6 \div$ \qquad $=$ \qquad
13. $7621 \times 0.03=7621 \times$ \qquad \div \qquad $=$ \qquad

Order of Operations with Decimals

Write your working in the spaces provided and underline you answers.

Silver	Gold
$3+2 \times 3$	$1.2+2.5 \times 4.0$
$3.0+2 \times 3.0$	$2.7+3.4 \times(-3)^{2}$
$5.0+3.0 \times 5.0$	$9.6-(3.1)^{2}$
$5.4 \times 2+2.7 \times 4$	$(-0.9) \times(1.5+5.8)$
$1.8+2 \times 3.6+1.0$	$(7.5)^{2}+1.6$
$3.7-(1.2+1.3)^{2}$	$(8.9)^{2}-(-4.9)$
$1.2 \times 10-3.6 \div 100$	$(-1.5) \times(-8.2)-3.3$
$1.2 \times(1.6+3.7)$	$3.9 \times 0.5+4.6 \times 3.7$
$3.6+(2.2-(-3.6))^{2}$	$1.33+(-4.66) \times 1.75^{2}$

Extension

$(5.9-5.3) \times 7.2+(1.4)^{2}$
$((2.1) 2+5.2-7.2) \times 7.1$

Extension and Inquiry

Multiply 0.283 by 10 , write this down, then multiply this answer by 10 , write this down, then by 10 again, write this down. Add you three answers to your starting number. What do you notice about your answer? What's the name for this type of number?

Try this for the following: $0.091,0.364,0.475,0.567,0.637,0.465$. What do you notice?

Try to make up some of your own.

Target 24

Instructions

1. Choose four numbers
2. Use $+,-, x, \div$ and brackets
3. Write calculations to make 24
4. You must use each digit exactly once

Try again for

1. Use the numbers $4,6,6$, and 8 .
2. Write calculations to make 24.
3. You must use each digit only once
4. How many ways can you find?

Try again

1. Make 24 using 1, 2, 3 and 4 exactly once
2. Make 24 using $1,2,3$ and 5 exactly once
3. Make 24 using $1,2,3$, and 6 exactly once
4. Make 24 using $1,2,3, \ldots$.

Bracketing

Put in brackets to make the following true
$8 \times 5-4+12 \div 2=24 \quad$ does this work for $0.8 \times 0.5-0.4+1.2 \div 0.2=2.4 ?$
$8 \times 5-4+12 \div 2=14 \quad$ does this work for $0.8 \times 0.5-0.4+1.2 \div 0.2=1.4 ?$
$8 \times 5-4+12 \div 2=42$ does this work for $0.08 \times 0.05-0.04+0.12 \div 0.02=0.42$?
$8 \times 5-4+12 \div 2=-44$
$8 \times 5-4+12 \div 2=12$
$8 \times 5-4+12 \div 2=52$
$8 \times 5-4+12 \div 2=10$
$8 \times 5-4+12 \div 2=32$
$8 \times 5-4+12 \div 2=-24$

