

Lesmahagow High School
Mathematics Department

National 5

Gradients

Corrective Actions

WORKSHEETS

Gradient	
Find the gradient of a line joining two points	Know that gradient is represented by the letter m Step 1: Select two coordinates Step 2: Label them $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ Step 3: Substitute them into gradient formula e.g.$x_{1} \quad y_{1}, x_{2}$ $(-4,4), ~(12,-28)$ $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(-28)-4}{12-(-4)}=-\frac{-32}{16}=-2$

Lesmahagow High School Mathematics Department

Gradient

https://www.national5maths.co.uk/free-national-5-maths-2/

DETERMINING the GRADIENT of a STRAIGHT LINE given TWO POINTS

4. Calculate the gradient of the line joining each pair of points below:
(a) $(2,1)$ and $(6,3)$
(b) $(1,5)$ and $(3,1)$
(c) $(2,0)$ and $(4,6)$
(d) $(4,3)$ and $(8,11)$
(e) $(1,9)$ and $(3,1)$
(f) $(7,3)$ and $(5,2)$
(g) ($-2,-3$) and (2, 3)
(h) $(-1,2)$ and $(5,-1)$
(i) $(-4,2)$ and $(4,-4)$
(j) $(-6,-2)$ and $(-5,3)$
(k) $(4,-3)$ and $(6,5)$
(l) $(-2,3)$ and $(0,-2)$
5. Calculate the gradient of the line joining each pair of points below:
(a) $\quad \mathrm{A}(-2,6)$ and $\mathrm{B}(8,8)$
(b) $\mathrm{C}(3,-3)$ and $\mathrm{D}(4,-1)$
(c) $\mathrm{E}(5,-9)$ and $\mathrm{F}(8,-15)$
(d) $\mathrm{G}(0,6)$ and $\mathrm{H}(5,11)$
(e) $\mathrm{I}(-1,-3)$ and $\mathrm{J}(7,-9)$
(f) $\quad \mathrm{K}(-4,0)$ and $\mathrm{L}(-1,5)$
(g) $\quad \mathrm{M}(2,2)$ and $\mathrm{N}(-3,4)$
(h) $\quad \mathrm{P}(5,-1)$ and $\mathrm{Q}(-2,10)$
(i) $\quad \mathrm{R}(-3,-5)$ and $\mathrm{S}(8,-4)$
(j) $\quad \mathrm{T}(4,-6)$ and $\mathrm{U}(7,-2)$
(k) $\quad \mathrm{V}(5,-6)$ and $\mathrm{W}(-2,6)$
(l) $\quad \mathrm{X}(-1,7)$ and $\mathrm{Y}(-2,6)$
(m) $\mathrm{J}(6,8)$ and $\mathrm{K}(-3,-5)$
(n) $\mathrm{S}(3,-5)$ and $\mathrm{T}(-2,8)$
(o) $\mathrm{D}(6,-3)$ and $\mathrm{E}(0,4)$
(p) $\mathrm{F}(6,9)$ and $\mathrm{G}(-5,-5)$
6. Prove that the following sets of points are collinear:
(a) $\mathrm{A}(-6,-1), \mathrm{B}(2,3)$ and $\mathrm{C}(4,4)$
(b) $\quad \mathrm{P}(1,-1), \mathrm{Q}(-3,5)$ and $\mathrm{R}(7,-10)$
(c) $\mathrm{E}(5,-3), \mathrm{F}(11,-2)$ and $\mathrm{G}(-7,-5)$
(d) $\mathrm{K}(5,-4), \mathrm{L}(-1,4)$ and $\mathrm{M}(91 / 2,-10)$
7. Given that each set of points are collinear, find the value of k in each case:
(a) $\quad \mathrm{P}(-4,-2), \mathrm{Q}(-1,-1)$ and $\mathrm{R}(8, k)$
(b) $\mathrm{A}(1,3), \mathrm{B}(3, k)$ and $\mathrm{C}(4,-6)$
(c) $\quad \mathrm{E}(-4,-1), \mathrm{F}(k,-1)$ and $\mathrm{G}(8,7)$
(d) $\quad \mathrm{S}(k, 2), \mathrm{T}(9,1)$ and $\mathrm{U}(-3,4)$
8. The points E and F have coordinates $(2,-5)$ and $(-4, a)$ respectively. Given that the gradient of the line EF is $\frac{2}{3}$, find the value of a.
9. If the points $(3,2),(-1,0)$ and $(4, k)$ are collinear, find k.
10. Given that the points $(3,-2),(4,5)$ and $(-1, a)$ are collinear, find the value of a.
11. The line which passes through $(1,4)$ and $(2,5)$ is parallel to the line through $(3,7)$ and $(k, 5)$. Find the value of k.
12. The line which passes through $(-2,3)$ and $(-5,-9)$ is parallel to the line through $(4, k)$ and $(-1,-1)$. Find the value of k.

Lesmahagow High School
 Mathematics Department

N5

Solutions
https://www.national5maths.co.uk/free-national-5-maths-2/
1.
(a)
(i) 2
(ii) $-\frac{1}{2}$
(iii) $\frac{4}{3}$
(iv) $-\frac{1}{6}$
(v) 1
(b) 0; undefined; positive; negative
2.
(a) 1
(b) 2
(c) $\frac{2}{3}$
(d) 5
(e) $\frac{1}{3}$
(f) $\frac{3}{2}$
(g) $\quad-3$
(h) $\quad-\frac{1}{2}$
(i) $-\frac{3}{2}$
(j) -1
(k) $\quad-6$
(l) $-\frac{1}{8}$
3.
(a) -3
(b) $\frac{1}{2}$
(c) 1
(d) $-\frac{1}{2}$
(e) $\frac{2}{5}$
(f) 4
4.
(a) $\frac{1}{2}$
(b) -2
(c) 3
(d) 2
(e) -4
(f) $\frac{1}{2}$
(g) $\frac{3}{2}$
(h) $\quad-\frac{1}{2}$
(i) $-\frac{3}{4}$
(j) 5
(k) 4
(l) $-\frac{5}{2}$
5.
(a) $\frac{1}{5}$
(b) 2
(c) -2
(d) 1
(e) $-\frac{3}{4}$
(f) $\frac{5}{3}$
(g) $-\frac{2}{5}$
(h) $-\frac{11}{7}$
(i) $\frac{1}{11}$
(j) $\frac{4}{3}$
(k) $-\frac{12}{7}$
(I) 1
(m) $\frac{13}{9}$
(n) $-\frac{13}{5}$
(o) $-\frac{7}{6}$
(p) $\frac{14}{11}$
6.
(a) both gradients $\frac{1}{2}$
(b) both gradients $-\frac{3}{2}$
(c) both gradients $\frac{1}{6}$
(d) both gradients $-\frac{4}{3}$
7.
(a) $\quad k=2$
(b) $k=-3$
(c) $k=-4$
(d) $k=5$
9. $k=2 \cdot 5$
10. $a=-30$
11. $k=1$
12. $k=19$
8. $a=-9$

