

Lesmahagow High School
Mathematics Department

National 5

Volume

Corrective Actions

WORKSHEETS

Volumes	
Volume of a prism	$V=$ Area of base x height
Volume of a cylinder	$V=\pi r^{2} h$
Volume of a cone	$V=\frac{1}{3} \pi r^{2} h$
Volume of a sphere	$V=\frac{4}{3} \pi r^{3}$

Topic	Skills
Rearrange each of the formulae to find an unknown	e.g. Cylinder has volume $400 \mathrm{~cm}^{3}$ and radius 6 cm , find the height $\begin{array}{ll} V=\pi r^{2} h & h=\frac{400}{\pi \times 6^{2}} \\ \frac{V}{\pi r^{2}}=h & \end{array}$
Volume of composite shapes	These are two of the above combined: Label them V_{1} and V_{2} e.g. $\begin{aligned} & V_{1}=\frac{4}{3} \pi r^{3} \div 2 \\ & V_{1}=\ldots \\ & V_{2}=\pi r^{2} h \\ & V_{2}=\ldots \end{aligned}$

Lesmahagow High School Mathematics Department

N5

Volume

https://www.national5maths.co.uk/free-national-5-maths-2/

VOLUME of a CYLINDER

2. A milk dispenser is cylindrical in shape with diameter 30 cm .
(a) If 14 litres of milk are poured into it, calculate the depth of the milk in the cylinder.

(b) The height of the cylinder is 25 cm .

How many more litres of milk are needed to completely fill it?
3.

Calculate the volume of a cylinder with diameter 12 cm and height 8 cm .
4. This paint tin has diameter 20 cm and height 30 cm as shown in the diagram.

It is claimed that it can hold 10 litres of paint. Is this claim correct?
You must show all working and give a reason for your answer.

WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID

1. Calculate the volume of each sphere described below, rounding your answer to 1 decimal place.

(a) $r=6 \mathrm{~cm}$
(b) $r=2 \mathrm{~m}$
(c) $r=9 \mathrm{~mm}$
(d) $r=3 \mathrm{~cm}$
2. Find the volume of a sphere for the following values of \boldsymbol{r} and \boldsymbol{d}. (give your answers correct to 3 significant figures)

(a) $r=10 \mathrm{~cm}$
(f) $d=18 \mathrm{~cm}$
(b) $r=25 \mathrm{~cm}$
(g) $r=80 \mathrm{~mm}$
(c) $d=2 \mathrm{~m}$
(h) $d=55 \mathrm{~cm}$
(d) $r=200 \mathrm{~mm}$
(i) $r=3 \cdot 5 \mathrm{~m}$
(e) $d=11 \mathrm{~cm}$
(j) $d=48 \mathrm{~cm}$
3. A sphere has a diameter of 8 cm .

Calculate its volume giving your answer correct to 3 significant figures.
4. Find the volume of a cone for the following values of \boldsymbol{r} and \boldsymbol{h}.
(give your answers correct to 3 significant figures)
(a) $\quad r=5 \mathrm{~cm} \quad h=14 \mathrm{~cm}$
(b) $\quad r=7 \mathrm{~cm} \quad h=25 \mathrm{~cm}$
(c) $r=3 \mathrm{~cm} \quad h=22 \mathrm{~cm}$
(d) $\quad r=12 \mathrm{~cm} \quad h=7 \mathrm{~cm}$

5. Find the volume of a cone for the following values of \boldsymbol{d} and \boldsymbol{h}. (give your answers correct to 3 significant figures)
(a) $d=15 \mathrm{~cm} \quad h=40 \mathrm{~cm}$
(b) $\quad d=11 \mathrm{~cm} \quad h=37 \mathrm{~cm}$
(c) $\quad d=22 \mathrm{~cm} \quad h=125 \mathrm{~cm}$
(d) $\quad d=8.8 \mathrm{~cm} \quad h=30 \mathrm{~cm}$
6. Calculate the volume of each cone described below, rounding your answers to 1 decimal place.

(a) $\quad r=3 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$
(b) $\quad r=8 \mathrm{~mm}$ and $h=12 \mathrm{~mm}$
(c) $\quad r=3 \mathrm{~cm}$ and $h=5 \mathrm{~cm}$
(d) $\quad r=2 \mathrm{~m}$ and $h=6 \mathrm{~m}$
7. A cone has a base diameter of 8 cm and a height of 5 cm . Calculate the volume of this cone.
8. A cone has a base diameter of 10 cm and a slant height of 13 cm . Calculate the volume of the cone.

9. A cone has a base radius of 9 cm and a slant height of 15 cm .

Calculate the volume of the cone.
10. A pyramid has a square base of side 4 cm and a vertical height of 7 cm .

Calculate the volume of the pyramid correct to 2 significant figures.
11. A pyramid has a rectangular base measuring 16 mm by 12 mm and a vertical height of 10 mm .

Calculate the volume of the pyramid.

Lesmahagow High School
 Mathematics Department

N5

Solutions
https://www.national5maths.co.uk/free-national-5-maths-2/

1. (a) $1696.5 \mathrm{~cm}^{3}$
(b) $4825.5 \mathrm{~cm}^{3}$
(c) $603.2 \mathrm{~cm}^{3}$
(d) $2513 \cdot 3 \mathrm{~cm}^{3}$
(e) $75398.2 \mathrm{~cm}^{3}$
(f) $3078 \cdot 8 \mathrm{~cm}^{3}$
(g) $28274.3 \mathrm{~cm}^{3}$
(h) $13304 \cdot 6 \mathrm{~cm}^{3}$ (i)
(i) $760265 \mathrm{~cm}^{3}$
(j) $7298.5 \mathrm{~cm}^{3}$
2.

(a) $19 \cdot 8 \mathrm{~cm}$
(b) 3.7 litres
3. $904 \mathrm{~cm}^{3}$
4. No; volume is 9.72 litres

WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID

1.

(a) $904 \cdot 3 \mathrm{~cm}^{3}$
(b) $33 \cdot 5 \mathrm{~m}^{3}$
(c) $3052 \cdot 1 \mathrm{~mm}^{3}$
(d) $113 \cdot 0 \mathrm{~cm}^{3}$
2.
(a) $4190 \mathrm{~cm}^{3}$
(b) $65400 \mathrm{~cm}^{3}$
(c) $4 \cdot 19 \mathrm{~m}^{3}$
(d) $33500000 \mathrm{~mm}^{3}$
(e) $697 \mathrm{~cm}^{3}$
(f) $3050 \mathrm{~cm}^{3}$
(g) $\quad 2140000 \mathrm{~mm}^{3}$
(h) $87100 \mathrm{~cm}^{3}$
(i) $180 \mathrm{~m}^{3}$
(j) $\quad 57900 \mathrm{~cm}^{3}$
3. $268 \mathrm{~cm}^{3}$
4.
(a) $366 \mathrm{~cm}^{3}$
(b) $1280 \mathrm{~cm}^{3}$
(c) $207 \mathrm{~cm}^{3}$
(d) $1060 \mathrm{~cm}^{3}$
5.
(a) $2369 \mathrm{~cm}^{3}$
(b) $1170 \mathrm{~cm}^{3}$
(c) $15800 \mathrm{~cm}^{3}$
(d) $608 \mathrm{~cm}^{3}$
6.
(a) $56 \cdot 5 \mathrm{~cm}^{3}$
(b) $803 \cdot 8 \mathrm{~mm}^{3}$
(c) $47 \cdot 1 \mathrm{~cm}^{3}$
(d) $25 \cdot 1 \mathrm{~cm}^{3}$
7. $\quad 83.7 \mathrm{~cm}^{3}$
8. $314 \mathrm{~cm}^{3}$
9. $1020 \mathrm{~cm}^{3}$
10. $37 \mathrm{~cm}^{3}$
11. $640 \mathrm{~mm}^{3}$

