Lesmahagow High School Mathematics Department

S2

Factorising by Common Factor

 \&Substitution

Factorising a sum of terms with a numerical common factor

1. Copy and complete each of the following:
(a) $2 x+6=2(x+)$
(b) $5 a+20=5(a+)$
(c) $4 m-24=4(-)$
(d) $3 f-6=3(-)$
(e) $5 x+5 y=5(+)$
(f) $6 p-12 q=6(-)$
(g) $3 d-12 e=3(-)$
(h) $14+7 k=7(+)$
(i) $35-42 b=7(-)$
(j) $24 a+36 b=12(+)$
2. Factorise:
(a) $2 x+2 y$
(b) $3 c+3 d$
(c) $6 s+6 t$
(d) $12 x+12 y$
(e) $9 a+9 b$
(f) $8 b+8 c$
(g) $5 p+5 q$
(h) $7 g+7 h$
(i) $4 m+4 n$
(j) $9 e+9 f$
(k) $13 j+13 k$
(l) $14 v+14 w$
3. Factorise:
(a) $2 x+8$
(b) $3 m+12$
(c) $4 y-4$
(d) $5 p+5$
(e) $8 w-16$
(f) $7 u+21$
(g) $10 z-20$
(h) $6 h+24$
(i) $2 d-12$
(j) $5 r+5 s$
(k) $3 k-3 l$
(l) $7 w+7 x$
(m) $4 u+8 v$
(n) $6 r-18 s$
(o) $2 e+20 f$
4. Factorise:
(a) $4 x+10$
(b) $6 g-15$
(c) $4 f+2$
(d) $8 y-4$
(e) $12 e+8$
(f) $6 m+21$
(g) $10 a-6$
(h) $9 h+12$
(i) $6 r-14$
(j) $10 r+5 s$
(k) $12 k-3 l$
(l) $7 w+21 x$
(m) $4 q+8$
(n) $6+18 g$
(o) $12 m-9$
5. Factorise:
(a) $2 x+4$
(b) $3 d+9$
(c) $6 s+3$
(d) $12 x+4$
(e) $6+9 a$
(f) $2 b+8$
(g) $5 y+10$
(h) $10+15 c$
(i) $12 x+16$
(j) $18 m+24$
(k) $30+36 a$
(l) $14 y+21$
6. Factorise:
(a) $3 x-6$
(b) $4 y-8$
(c) $16-8 a$
(d) $10 c-15$
(e) $9 s-12$
(f) $2 b-14$
(g) $12 x-100$
(h) $22 m-33$
(i) $15 x-10$
(j) $18-12 y$
(k) $25 b-20$
(l) $18 d-30$
7. Factorise:
(a) $2 a+4 b$
(b) $10 x-12 y$
(c) $18 m+24 n$
(d) $10 c+15 d$
(e) $6 a-9 x$
(f) $18 s-12 t$
(g) $12 x+15 y$
(h) $14 a-7 b$
(i) $25 c+10 d$
(j) $9 b-15 y$
(k) $18 x+24 y$
(l) $6 a+28 b$

Factorising a sum of terms with a numerical common factor

EXAM QUESTIONS

1. Factorise
$35 x+56 y$
2. Factorise
$36+42 x$
3. Factorise
$30-6 t$
4. Factorise
15-25m
5. Factorise
$24 t-32$

Evaluating an expression or formulae which has more than one variable

1. If $x=10$ and $y=4$, calculate
(a) $x+y$
(b) $x-y$
(c) $2 x$
(d) $x y$
(e) $5 y$
(f) $x+7$
(g) $x-3$
(h) $y+15$
2. If $a=8, b=5$ and $c=2$, calculate
(a) $a+b$
(b) $a-b$
(c) $b+c$
(d) $a+10$
(e) $a-c$
(f) $3 a-6$
(g) $2 a+3 c$
(h) $8 c-3 b$
(i) $a+b+c$
(j) $a+c-b$
(k) $a-b-c$
(l) $2 a+3 b+4 c$
3. If $p=3, q=4$ and $r=2$, calculate
(a) $p+q$
(b) $q-p$
(c) $2 q+r$
(d) $p q+10$
(e) $p r+q$
(f) $2 p+3 r$
(g) $3 q-4 p$
(h) $p q-p r$
(i) $3 p+2 q+4 r(\mathbf{j})$
$p+2 q-5 r$
(k) $20 p-10 q$
(l) $100 r-50 p$
4. Given that $a=b+d$, find a when
(a) $\quad b=7$ and $d=9$
(b) $\quad b=14$ and $d=15$
(c) $\quad b=18$ and $d=5$
(d) $\quad b=33$ and $d=12$
(e) $\quad b=24$ and $d=17$
(f) $\quad b=190$ and $d=40$
(g) $\quad b=51$ and $d=16$
(h) $\quad b=68$ and $d=28$
(i) $\quad b=121$ and $d=38$
5. Given that $X=3 Y-Z$, find X when
(a) $Y=4$ and $Z=5$
(b) $\quad Y=10$ and $Z=15$
(c) $\quad Y=20$ and $Z=10$
(d) $\quad Y=12$ and $Z=8$
(e) $Y=15$ and $Z=5$
(f) $\quad Y=100$ and $Z=80$
(g) $\quad Y=50$ and $Z=23$
(h) $Y=17$ and $Z=4$
(i) $\quad Y=11$ and $Z=32$
6. (a) If $p=r-q$, find p when $r=42$ and $q=17$
(b) If $y=4 x-9$, find y when $x=7$
(c) If $A=7 B+C$, find A when $B=9$ and $C=8$
(d) If $R=S+5 T$, find R when $S=22$ and $T=6$
(e) If $H=G-2 F$, find H when $G=50$ and $F=15$
(f) If $k=2 m+3 n$, find k when $m=12$ and $n=3$
(g) If $c=4 d-5 e$, find c when $d=11$ and $e=8$
(h) If $P=2 Q+10 R$, find P when $Q=10$ and $R=2$
(i) If $g=5 e-2 f$, find g when $e=7$ and $f=17$
(j) If $M=9 C+8 D$, find M when $C=8$ and $D=7$
7. The formula for distance is $\mathbf{D}=\mathbf{S} \times \mathbf{T}$, where D is the distance in kilometres, S is the speed in km / h and T is the time in hours. Find D when
(a) $\mathrm{S}=30 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=2 \mathrm{~h}$
(b) $\mathrm{S}=50 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=3 \mathrm{~h}$
(c) $\mathrm{S}=60 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=5 \mathrm{~h}$
(d) $\mathrm{S}=80 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=4 \mathrm{~h}$
(e) $\mathrm{S}=55 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=3 \mathrm{~h}$
(f) $\mathrm{S}=70 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=31 / 2 \mathrm{~h}$
(g) $\mathrm{S}=68 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=21 / 2 \mathrm{~h}$
(h) $\mathrm{S}=54 \mathrm{~km} / \mathrm{h}$ and $\mathrm{T}=41 / 2 \mathrm{~h}$
8. The formula $\mathbf{V}=\mathbf{I R}$ is used in electrical calculations. Use the formula to find V when
(a) $\mathrm{I}=18$ and $\mathrm{R}=5$
(b) $\mathrm{I}=5$ and $\mathrm{R}=20$
(c) $\mathrm{I}=2.6$ and $\mathrm{R}=4.5$
(d) $\mathrm{I}=4 \cdot 1$ and $\mathrm{R}=10$
(e) $\mathrm{I}=3 \cdot 5$ and $\mathrm{R}=12$
(f) $\mathrm{I}=7$ and $\mathrm{R}=9 \cdot 2$
9. The formula $\mathbf{F}=\mathbf{1 \cdot 8 C}+\mathbf{3 2}$ is used to change a temperature from degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ to degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$. Change the following Celsius temperatures to Fahrenheit.

(a) $15^{\circ} \mathrm{C}$
(b) $35^{\circ} \mathrm{C}$
(c) $10^{\circ} \mathrm{C}$
(d) $20^{\circ} \mathrm{C}$
(e) $33^{\circ} \mathrm{C}$
(f) $5^{\circ} \mathrm{C}$
(g) $40^{\circ} \mathrm{C}$
(h) $22^{\circ} \mathrm{C}$
10. The area of a triangle is given by the formula $\mathbf{A}=\mathbf{1} / \mathbf{2} \mathbf{b h}$. Find the areas of the following triangles :
(a) $\mathrm{b}=10 \mathrm{~cm}$
$\mathrm{h}=8 \mathrm{~cm}$
(b) $\mathrm{b}=50 \mathrm{~mm}$
$\mathrm{h}=90 \mathrm{~mm}$
(c) $\mathrm{b}=12 \mathrm{~cm}$
$\mathrm{h}=15 \mathrm{~cm}$
(d) $\mathrm{b}=140 \mathrm{~m}$
$\mathrm{h}=60 \mathrm{~m}$
(e) $\mathrm{b}=18 \mathrm{~mm}$
$\mathrm{h}=100 \mathrm{~mm}$
(f) $\mathrm{b}=27 \mathrm{~cm}$
$\mathrm{h}=35 \mathrm{~cm}$
(g) $\mathrm{b}=16 \cdot 4 \mathrm{~m}$
$\mathrm{h}=12 \cdot 2 \mathrm{~m}$
(h) $\mathrm{b}=2240 \mathrm{~mm} \quad \mathrm{~h}=1560 \mathrm{~mm}$
11. The scale on a map is $1: 20000$. The formula to change a distance \mathbf{d} centimetres on the map to the real distance \mathbf{D} metres is

$$
D=\frac{20000 \times d}{100}
$$

Change these map distances to real distances :
(a) 4 cm
(b) 5 cm
(c) $3 \cdot 5 \mathrm{~cm}$
(d) $7 \cdot 2 \mathrm{~cm}$
(e) 0.7 cm
(f) 0.96 cm
(g) 1.04 cm
(h) $12 \cdot 57 \mathrm{~cm}$
12. In a regular polygon with \boldsymbol{n} sides, the size of an exterior angle is $\frac{360^{\circ}}{n}$.

Find the size of the exterior angle in a polygon with
(a) 5 sides
(b) 9 sides
(c) 12 sides
(d) 8 sides
(e) 18 sides
(f) 10 sides
(g) 30 sides
(h) 25 sides
13. A formula is given as $E=p^{2}+2$. Find the value of E when
(a) $p=2$
(b) $p=3$
(c) $p=6$
(d) $p=1$
14. A formula is given as $T=e^{2}+6$. Find the value of T when
(a) $e=3$
(b) $e=4$
(c) $e=8$
(d) $e=2$
15. A formula is given as $Q=36-r^{2}$. Find the value of Q when
(a) $r=3$
(b) $r=4$
(c) $\quad r=6$
(d) $r=1$
16. A formula is given as $G=45-h^{2}$. Find the value of G when
(a) $\quad h=4$
(b) $h=6$
(c) $\quad h=2$
(d) $\quad h=7$
17. A formula is given as $T=2(s)^{2}+4$. Find the value of T when
(a) $s=3$
(b) $s=5$
(c) $s=10$
(d) $s=1$
18. A formula is given as $W=25+3(x)^{2}$. Find the value of W when
(a) $x=2$
(b) $x=6$
(c) $x=8$
(d) $x=7$
19. A formula is given as $L=2 p^{2}-6$. Find the value of L when
(a) $p=2$
(b) $p=3$
(c) $p=5$
(d) $p=10$.
20. A formula is given as $H=t^{2}+2 t+1$. Find the value of H when
(a) $t=2$
(b) $t=4$
(c) $t=3$
(d) $t=10$.
21. A formula is given as $\mathrm{T}=k^{2}+3 k-6$. Find the value of T when
(a) $k=3$
(b) $k=6$
(c) $k=2$
(d) $k=12$
22. A formula is given as $\mathrm{E}=3 p+q$.
Find the value of E when
(a) $p=4$ and $q=2$
(b) $p=6$ and $q=3$
(c) $p=5$ and $q=1$
(d) $p=3$ and $q=-6$
23. A formula is given as $T=2 d-3 e$.

Find the value of T when
(a) $d=5$ and $e=2$
(b) $d=6$ and $e=3$
(c) $\quad d=8$ and $e=5$
(d) $\quad d=12$ and $e=8$
24. A formula is given as $F=7 r-2 s$.
Find the value of F when
(a) $\quad r=2$ and $s=5$
(b) $\quad r=3$ and $s=10$
(c) $\quad r=4$ and $s=4$
(d) $\quad r=6$ and $s=20$
25. A formula is given as $V=u+a t$.

Find the value of V when
(a) $u=3, a=2$ and $t=4$
(b) $u=6, a=3$ and $t=7$
(c) $u=2, a=8$ and $t=10$
26. A formula is given as $C=20+4 p t$.

Find the value of C when
(a) $\quad p=4$ and $t=3$
(b) $\quad p=5$ and $t=2$
(c) $\quad p=8$ and $t=0.5$
27. A formula is given as $W=a b-3 c$.

Find the value of W when
(a) $\quad a=4, b=6$ and $c=4$
(b) $\quad a=5, b=2$ and $c=3$
(c) $\quad a=6, b=4$ and $c=8$
28. A formula is given as $A=2 l h+2 l b+2 b h$.

Find the value of A when
(a) $\quad l=6, b=3$ and $h=2$
(b) $\quad l=5, b=4$ and $h=6$
(b) $\quad l=8, b=7$ and $h=4$

Evaluating an expression or formulae which has more than one variable

EXAM QUESTIONS

1. Find the value of $3 a-2 b$ when $a=-4$ and $b=2$.
2. Evaluate the formula $\quad W=\frac{10 \sqrt{P}}{4 d} \quad$ when $P=2 \cdot 56$ and $d=0 \cdot 4$.
3. The force, F , needed to stop a train traveling at a speed, $v \mathrm{~m} / \mathrm{s}$, within a stopping distance, $s \mathrm{~m}$, is given by the formula:

$$
F=\frac{120 v^{2}}{s}
$$

Find the force that would stop a train travelling at $24 \mathrm{~m} / \mathrm{s}$ in 400 m .
4. A formulae used in Electricity is

$$
I=\sqrt{\frac{P}{R}}
$$

where I is the current, P is the power and R is the resistance in a circuit. Find the current (I) when there is a power of 100 and a resistance of 12.
5. The period of the swing of a pendulum is given as $T=2 \pi \sqrt{\frac{l}{g}}$.

Calculate T when $l=75$ and $g=10 . \quad[\pi=3 \cdot 14]$
6. The formula for finding the radius of a circle when the area is known is

$$
R=\sqrt{\frac{A}{\pi}}
$$

Taking $\pi=3 \cdot 14$, find R when $A=1256$.
7. The formula for finding the length of side a in this diagram is

$$
a=\sqrt{ }\left(c^{2}-b^{2}\right)
$$

Calculate the length of side a when

$$
b=5 \text { and } c=13
$$

8. The formula for calculating the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$ where r is the radius and h is the height of the cone. $[\pi=3 \cdot 14]$

Use the formula to calculate the volume of a cone with diameter 18 cm and height 35 cm , giving your answer to the nearest $10 \mathrm{~cm}^{3}$.
9. Using the formula $m=\frac{E}{g h} \quad$ calculate m when $E=8, g=10$ and $h=40$.

Factorising a sum of terms with a numerical common factor

1. (a) $2 x+6=2(x+3)$
(b) $5 a+20=5(a+4)$
(c) $4 m-24=4(m-6)$
(d) $3 f-6=3(f-2)$
(e) $5 x+5 y=5(x+y)$
(f) $6 p-12 q=6(p-2 q)$
(g) $3 d-12 e=3(d-4 e)$
(h) $14+7 k=7(2+k)$
(i) $35-42 b=7(5-6 b)$
(j) $24 a+36 b=12(2 a+3 b)$
2.

(a) $2(x+y)$
(b) $3(c+d)$
(c) $6(s+t)$
(d) $12(x+y)$
(e) $9(a+b)$
(f) $8(b+c)$
(g) $5(p+q)$
(h) $7(g+h)$
(i) $4(m+n)$
(j) $\quad 9(e+f)$
(k) $13(j+k)$
(l) $14(v+w)$
3.
(a) $2(x+4)$
(b) $3(m+4)$
(c) $4(y-1)$
(d) $5(p+1)$
(e) $8(w-2)$
(f) $7(u+3)$
(g) $10(z-2)$
(h) $6(h+4)$
(i) $2(d-6)$
(j) $5(r+s)$
(k) $3(k-l)$
(l) $7(w+x)$
(m) $4(u+2 v)$
(n) $6(r-3 s)$
(o) $2(e+10 f)$
4.
(a) $2(2 x+5)$
(b) $3(2 g-5)$
(c) $2(2 f+1)$
(d) $4(2 y-1)$
(e) $4(3 e+2)$
(f) $3(2 m+7)$
(g) $2(5 a-3)$
(h) $3(3 h+4)$
(i) $2(3 r-7)$
(j) $\quad 5(2 r+s)$
(k) $3(4 k-l)$
(l) $7(w+3 x)$
(m) $4(q+2)$
(n) $6(1+3 g)$
(o) $3(4 m-3)$
5.
(a) $2(x+2)$
(b) $3(d+3)$
(c) $3(2 s+1)$
(d) $4(3 x+1)$
(e) $3(2+3 a)$
(f) $2(b+4)$
(g) $5(y+2)$
(h) $5(2+3 c)$
(i) $4(3 x+4)$
(j) $\quad 6(3 m+4)$
(k) $6(5+6 a)$
(l) $7(2 y+3)$
6.
(a) $3(x-2)$
(b) $4(y-2)$
(c) $8(2-a)$
(d) $5(2 c-3)$
(e) $3(3 s-4)$
(f) $\quad 2(b-7)$
(g) $4(3 x-25)$
(h) $11(2 m-3)$
(i) $5(3 x-2)$
(j) $6(3-2 y)$
(k) $5(5 b-4)$
(l) $6(3 d-5)$
7.
(a) $2(a+2 b)$
(b) $2(5 x-6 y)$
(c) $6(3 m+4 n)$
(d) $5(2 c+3 d)$
(e) $3(2 a-3 x)$
(f) $6(3 s-2 t)$
(g) $3(4 x+5 y)$
(h) $7(2 a-b)$
(i) $5(5 c+2 d)$
(j) $3(3 b-5 y)$
(k) $6(3 x+4 y)$
(l) $2(3 a+14 b)$

Factorising

EXAM QUESTIONS

1. $7(5 x+8 y)$
2. $6(6+7 x)$
3. $6(5-t)$
4. $5(3-5 m)$
5. $8(3 t-4)$

Evaluating an expression or formulae which has more than one variable

1.

(a) 14
(b) 6
(c) 20
(d) 40
(e) 20
(f) 17
(g) 7
(h) 19
2.
(a) 13
(b) 3
(c) 7
(d) 18
(e) $6 \quad$ (f) 18
(g) 22
(h) 1
(i) 15
(j) 5
(k) 1
(l) 39
(g) 0
(b) 1
(c) 10
(d) 22
(e) 10
(f) 12
(a) 16
(h) 6
(i) 25
(j) 1
(k) 20
(l) 50
(g) 67
(b) 29
(c) 23
(d) 45
(e) 41
(f) 230
(a) 159
3.
4.
(a) 7
(b) 15
(g) 127
(h) 47
(c) 50
(d) 28
(e) 40
(f) 220
(i) 1
(a) 25
(b) 19
(g) 4
(h) 40
(c) 71
(d) 52
(e) $20 \quad$ (f) 33
(a) 60
(J) 128
(i) 1
(b) 150
(c) 300
(g) $\quad 170 \quad$ (h) $\quad 243$
(d) 320
(e) $165 \quad$ (f) 245
(a) 90
(b) 100
(c) 11.7
(d) 41
$\begin{array}{ll}\text { (e) } \quad 42 & \text { (f) } 64 \cdot 4\end{array}$
9
$\begin{array}{llll}\text { (a) } & 59 & \text { (b) } & 95 \\ \text { (g) } & 104 & \text { (h) } & 71.6\end{array}$
(c) 50
(d) 68
(e) $91.4 \quad$ (f)
(f) 41
(h) 71.6
10.
(g) $\quad 100 \cdot 04$
2250
(c) 90
(h) 1747200
(d) 4200
(e) $900 \quad$ (f)
f) $472 \cdot 5$
11.
(a) 800
(b) 1000
(c) 700
(d) 1440
(e) $140 \quad$ (f)
192
$\begin{array}{lll}\text { (g) } & 208 & \text { (h) } 2514\end{array}$
12.
(a) 72°
(b) 40°
(c) 30°
(d) 45°
(e) $20^{\circ} \quad$ (f) $\quad 36^{\circ}$
$\begin{array}{lll}\text { (g) } & 12^{\circ} & \text { (h) } \quad 14 \cdot 4^{\circ}\end{array}$
13.
(a) $E=6$
(b) $E=11$
(c) $E=38$
(d) $E=3$
14.
(a) $T=15$
(b) $\quad T=22$
(c) $\quad T=70$
(d) $T=10$
15.
(a) $Q=27$
(b) $Q=20$
(c) $\quad Q=0$
(d) $Q=35$
16. (a) $G=29$
(b) $\quad G=9$
(c) $\quad G=41$
(d) $\quad G=-4$
17.
(a) $T=22$
(a) $\quad T=54$
(c) $\quad T=204$
(d) $T=6$
18.
(a) $\quad W=37$
(b) $\quad W=133$
(c) $\quad W=217$
(d) $\quad W=172$
19. (a) $L=2$
(b) $L=12$
(c) $L=44$
(d) $L=194$
20. (a) $H=9$
(b) $\quad H=25$
(c) $H=16$
(d) $H=121$
21.
(a) $\quad T=12$
(b) $\quad T=48$
(c) $\quad T=4$
(d) $T=174$
22.
(a) $E=14$
(b) $E=21$
(c) $E=16$
(d) $E=3$
23.
(a) $\quad T=4$
(b) $\quad T=3$
(c) $\quad T=1$
(d) $\quad T=0$
24. (a) $F=4$
(b) $\quad F=1$
(c) $\quad F=20$
(d) $\quad F=2$
25. (a) $V=11$
(b) $\quad V=27$
(c) $\quad V=82$
26.
(a) $C=68$
(b) $C=60$
(c) $C=36$
27.
(a) $\quad W=12$
(b) $\quad W=1$
(c) $\quad W=0$
28.
(a) $A=72$
(b) $\quad A=148$
(c) $\quad A=232$

Evaluating an expression

Exam Questions

1. -16
2. 10
3. $172 \cdot 8$
4. $2 \cdot 9$
5. 17.2
6. 20
7. 12
8. 2970
9. 0.02
