Lesmahagow High School
 Mathematics Department

S3 Volume

WORKING with VOLUME of a CYLINDER

Cylinder is National 4

1. Circular - based prism (cylinder)

Find the volume of a circular-based prism for the values of \boldsymbol{r} and \boldsymbol{h} given.

(a) $r=6 \mathrm{~cm}$
$h=15 \mathrm{~cm}$
(b) $r=8 \mathrm{~cm}$
$h=24 \mathrm{~cm}$
(c) $r=4 \mathrm{~cm}$
$h=12 \mathrm{~cm}$
(d) $r=10 \mathrm{~cm}$
$h=8 \mathrm{~cm}$
(e) $r=20 \mathrm{~cm}$
$h=60 \mathrm{~cm}$
(f) $\quad r=7 \mathrm{~cm}$
$h=20 \mathrm{~cm}$
(g) $r=15 \mathrm{~cm}$
$h=40 \mathrm{~cm}$
(h) $r=11 \mathrm{~cm}$
$h=35 \mathrm{~cm}$
(i) $\quad r=44 \mathrm{~cm}$
$h=125 \mathrm{~cm}$
(j) $\quad r=8.8 \mathrm{~cm}$
$h=30 \mathrm{~cm}$
2. A milk dispenser is cylindrical in shape with diameter 30 cm .
(a) If 14 litres of milk are poured into it, calculate the depth of the milk in the cylinder.

(b) The height of the cylinder is 25 cm .

How many more litres of milk are needed to completely fill it?
3.

Calculate the volume of a cylinder with diameter 12 cm and height 8 cm .
4. This paint tin has diameter 20 cm and height 30 cm as shown in the diagram.

It is claimed that it can hold 10 litres of paint. Is this claim correct?
You must show all working and give a reason for your answer.

WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID

1. Calculate the volume of each sphere described below, rounding your answer to 1 decimal place.

(a) $r=6 \mathrm{~cm}$
(b) $r=2 \mathrm{~m}$
(c) $r=9 \mathrm{~mm}$
(d) $r=3 \mathrm{~cm}$
2. Find the volume of a sphere for the following values of \boldsymbol{r} and \boldsymbol{d}. (give your answers correct to 3 significant figures)

(a) $r=10 \mathrm{~cm}$
(f) $d=18 \mathrm{~cm}$
(b) $r=25 \mathrm{~cm}$
(g) $r=80 \mathrm{~mm}$
(c) $d=2 \mathrm{~m}$
(h) $d=55 \mathrm{~cm}$
(d) $r=200 \mathrm{~mm}$
(i) $r=3 \cdot 5 \mathrm{~m}$
(e) $d=11 \mathrm{~cm}$
(j) $d=48 \mathrm{~cm}$
3. A sphere has a diameter of 8 cm .

Calculate its volume giving your answer correct to 3 significant figures.
4. Find the volume of a cone for the following values of \boldsymbol{r} and \boldsymbol{h}.
(give your answers correct to 3 significant figures)
(a) $\quad r=5 \mathrm{~cm} \quad h=14 \mathrm{~cm}$
(b) $\quad r=7 \mathrm{~cm} \quad h=25 \mathrm{~cm}$
(c) $\quad r=3 \mathrm{~cm} \quad h=22 \mathrm{~cm}$
(d) $\quad r=12 \mathrm{~cm} \quad h=7 \mathrm{~cm}$

5. Find the volume of a cone for the following values of \boldsymbol{d} and \boldsymbol{h}. (give your answers correct to 3 significant figures)
(a) $d=15 \mathrm{~cm} \quad h=40 \mathrm{~cm}$
(b) $\quad d=11 \mathrm{~cm} \quad h=37 \mathrm{~cm}$
(c) $\quad d=22 \mathrm{~cm} \quad h=125 \mathrm{~cm}$
(d) $\quad d=8.8 \mathrm{~cm} \quad h=30 \mathrm{~cm}$
6. Calculate the volume of each cone described below, rounding your answers to 1 decimal place.

(a) $\quad r=3 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$
(b) $\quad r=8 \mathrm{~mm}$ and $h=12 \mathrm{~mm}$
(c) $\quad r=3 \mathrm{~cm}$ and $h=5 \mathrm{~cm}$
(d) $\quad r=2 \mathrm{~m}$ and $h=6 \mathrm{~m}$
7. A cone has a base diameter of 8 cm and a height of 5 cm . Calculate the volume of this cone.
8. A cone has a base diameter of 10 cm and a slant height of 13 cm . Calculate the volume of the cone.

9. A cone has a base radius of 9 cm and a slant height of 15 cm .

Calculate the volume of the cone.
10. A pyramid has a square base of side 4 cm and a vertical height of 7 cm .

Calculate the volume of the pyramid correct to 2 significant figures.
11. A pyramid has a rectangular base measuring 16 mm by 12 mm and a vertical height of 10 mm .

Calculate the volume of the pyramid.

EXAM QUESTIONS

1. The Stockholm Globe Arena is the largest hemispherical building in the world.

The radius of the building is 110 m .
Calculate the volume of the building in cubic metres, giving your answer in scientific notation correct to 3 significant figures.

2. A metal bottle stopper is made up from a cone topped with a sphere.

The sphere has diameter 1.5 cm .
The cone has radius 0.9 cm .
The overall length of the stopper is 6.5 cm .
Calculate the volume of metal required to make the stopper.
Give your answer correct to 3 significant figures.
3. The volume of this sphere is $524 \mathrm{~cm}^{3}$.

Calculate the diameter, $d \mathrm{~cm}$.

4. Non Calculator!

Calculate the volume of this sphere which has radius 3 m .
[Take $\pi=3 \cdot 14$]

5. Sherbet in a sweet shop is stored in a cylindrical container like the one shown in diagram 1.

The volume of the cylinder, correct to the nearest $1000 \mathrm{~cm}^{3}$, is $10000 \mathrm{~cm}^{3}$.
The sherbet is sold in conical containers with diameter 5 cm as shown in diagram 2.

250 of these cones can be filled from the contents of the cylinder.

Calculate the depth, $d \mathrm{~cm}$, of a sherbet cone.
Diagram 2

6. Non Calculator:

The diagram shows a cone with radius 10 centimetres and height 30 centimetres.

Taking $\pi=3 \cdot 14$, calculate the volume of the cone.

7.

A children's wobbly toy is made from a cone, 21 cm high, on top of a hemispherical base of diameter 20 cm .

The toy has to be filled with liquid foam.
Calculate the volume of foam which will be required.
8.

The lamp cover in a street lamp is in the shape of a cone with the bottom cut off.

The height of the cone is 50 cm and its radius is 25 cm . The height of the lamp is 30 cm
and the base of the lamp has a radius of 18 cm
Calculate the volume of the lamp cover. [Answer to 3 significant figures.]
9.

A glass candle holder is in the shape of a cuboid with a cone removed. The cuboid measures 4 cm by 4 cm by 6 cm .

The cone has a diameter of 3 cm and a height of 5 cm .
Calculate the volume of glass in the candle holder.
10. For the Christmas market a confectioner has created a chocolate Santa. It consists of a solid hemisphere topped by a solid cone.

Both have diameter 5 cm and the height of the cone is 4 cm as shown in the diagram.

Calculate the volume of chocolate required to make one chocolate
Santa, giving your answer correct to 3 significant figures.
11. The diameter of an ordinary snooker ball is $5 \cdot 25 \mathrm{~cm}$.

Calculate the volume of a snooker ball giving your answer correct to 3 significant figures.
12. A dessert is in the shape of a truncated cone [a cone with a 'slice' taken from the top].

The radius of the base is 4.1 cm and is 1.6 cm at the top.
The other dimensions are shown in the diagram.

Calculate the volume of the dessert.
13. A young child was given a slab of moulding clay. It was a cuboid and measured $15 \cdot 2 \mathrm{~cm}$ by $4 \cdot 8 \mathrm{~cm}$ by 3.4 cm .
(a) Calculate the volume of the cuboid rounding your answer to 2 significant figures.

The clay was made into 25 identical spheres.
(b) Using your answer from part (a), calculate the radius of one of the spheres.
14. An ice cream is shaped like the one in the diagram.

The overall height of is 11.7 cm .
The height of the cylinder is 3.2 cm .
The diameter of the cone and cylinder is 6.6 cm .
Calculate the volume of ice cream.

15. A company that produces bins uses the design of a cylindrical base with a hemispherical lid.

If the total height of the bin is 60 cm and the radius of the bin is 14 cm , calculate the total volume of the bin in litres correct to 3 significant figures.
(Volume of cylinder $=\pi r^{2} h ;$
Volume of sphere $=4 / 3 \pi r^{3}$)

16.

A Christmas bauble is made from a sphere of perspex with a coloured cylinder in the middle. The volume round the cylinder is filled with a thick liquid.

The sphere has a diameter of 8 cm . The cylinder has a radius of 2.6 cm with a height of 6 cm .

Calculate the volume of liquid needed to fill the sphere, giving your answer correct to 2 significant figures.
1.
(a) $1696.5 \mathrm{~cm}^{3}$
(b) $4825.5 \mathrm{~cm}^{3}$
(c) $603.2 \mathrm{~cm}^{3}$
(d) $2513 \cdot 3 \mathrm{~cm}^{3}$
(e) $75398.2 \mathrm{~cm}^{3}$
(f) $3078 \cdot 8 \mathrm{~cm}^{3}$
(g) $28274 \cdot 3 \mathrm{~cm}^{3}$
(h) $13304.6 \mathrm{~cm}^{3}$
(i) $760265 \mathrm{~cm}^{3}$
(j) $7298.5 \mathrm{~cm}^{3}$
2.
(a) 19.8 cm
(b) $3 \cdot 7$ litres
3. $904 \mathrm{~cm}^{3}$
4. No; volume is 9.72 litres

WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID

1.

(a) $904 \cdot 3 \mathrm{~cm}^{3}$
(b) $33 \cdot 5 \mathrm{~m}^{3}$
(c) $3052 \cdot 1 \mathrm{~mm}^{3}$
(d) $113 \cdot 0 \mathrm{~cm}^{3}$
2.
(a) $4190 \mathrm{~cm}^{3}$
(b) $65400 \mathrm{~cm}^{3}$
(c) $4 \cdot 19 \mathrm{~m}^{3}$
(d) $33500000 \mathrm{~mm}^{3}$
(e) $697 \mathrm{~cm}^{3}$
(f) $3050 \mathrm{~cm}^{3}$
(g) $\quad 2140000 \mathrm{~mm}^{3}$
(h) $87100 \mathrm{~cm}^{3}$
(i) $180 \mathrm{~m}^{3}$
(j) $\quad 57900 \mathrm{~cm}^{3}$
3. $268 \mathrm{~cm}^{3}$
4.
(a) $366 \mathrm{~cm}^{3}$
(b) $1280 \mathrm{~cm}^{3}$
(c) $207 \mathrm{~cm}^{3}$
(d) $1060 \mathrm{~cm}^{3}$
5.
(a) $2369 \mathrm{~cm}^{3}$
(b) $1170 \mathrm{~cm}^{3}$
(c) $15800 \mathrm{~cm}^{3}$
(d) $608 \mathrm{~cm}^{3}$
6.
(a) $56 \cdot 5 \mathrm{~cm}^{3}$
(b) $803 \cdot 8 \mathrm{~mm}^{3}$
(c) $47 \cdot 1 \mathrm{~cm}^{3}$
(d) $25 \cdot 1 \mathrm{~cm}^{3}$
7. $\quad 83 \cdot 7 \mathrm{~cm}^{3}$
8. $314 \mathrm{~cm}^{3}$
9. $1020 \mathrm{~cm}^{3}$
10. $37 \mathrm{~cm}^{3}$
11. $640 \mathrm{~mm}^{3}$

WORKING with the VOLUME of a SOLID SPHERE, CONE, PYRAMID and CYLINDER

EXAM QUESTIONS

1. 2.79×10^{6} m
2. $6 \cdot 11 \mathrm{~cm}$
3. $3140 \mathrm{~cm}^{3}$
4. 10 cm
5. $113.04 \mathrm{~m}^{3}$
6. $58.9 \mathrm{~cm}^{3}$
7. $4291 \mathrm{~cm}^{3}$
8. $25900 \mathrm{~cm}^{3}$
9. $84 \cdot 225 \mathrm{~cm}^{3}$
10. $75 \cdot 7 \mathrm{~cm}^{3}$
11. $\quad 93 \cdot 4 \mathrm{~cm}^{3}$
12.

(a) $250 \mathrm{~cm}^{3}$
(b) 1.3 cm
14. $206 \mathrm{~cm}^{3}$
15. $34 \cdot 1$ litres
16. $140 \mathrm{~cm}^{3}$

